
Game Engine Programming

GMT Master Program
Utrecht University

Dr. Nicolas Pronost

Course code: INFOMGEP
Credits: 7.5 ECTS

Lecture #13

Game network programming

• We have seen that mechanisms can be

used to communicate between classes

– e.g. Listener and Event design patterns

• But how to communicate between classes

on different machines?

– Use of common protocols to send / receive

packets (data)

• Multi-player games use intensively multi-

machine exchanges

– local (LAN parties) or global (MMOG) network

3

Introduction

• The Internet is a packet-switched, fault-

tolerant network

– information is broken into small packets (B / kB)

– sent from A to B by traversing a web-like server

structure (cyberspace)

– using different paths that adapt to network

circumstances, errors, server malfunctions etc.

– packets do not necessarily arrived in the correct

order, they need to be identified (labeled or

numbered)

4

Few words about the Internet

• In circuit-based networks

– we own the communication circuit from origin to

destination

– access is exclusive

– the path from A to B is unique

– information is sent as a single block

– used

• in traditional land telephone system

• in small / medium scale multi-player games (LAN)

5

Packet vs. Circuit

• Two tasks take place

– Data is fragmented at one end and reassembled

at the other end

– Individual packets are routed through the

network

• Performed in parallel by two protocols

– Transmission Control Protocol (TCP) is the data

separator and assembler

– Internet Protocol (IP) takes care of the routing

6

Few words about the Internet

• Recommended for traditional networking

– guarantees FIFO (buffer) operations (data arrive

in the correct order) and ensures that the data

sent reach their destination

– as it allows to detect lost packets, and re-

request them

– but this protocol is slow

• wait to receive all packets in the correct order to

rebuild the initial sequence

• secure transmission at the cost of reduced

performance

7

TCP/IP

• User Datagram Protocol (UDP)

– sacrifices slowest features for speed

– by sending fixed-size data packages

– does not require an active connection

(connectionless protocol)

– lost packets are not recovered

– FIFO is not guaranteed

8

UDP

• Usage will depend on the game-play

• Examples

– Strategy game where lag is acceptable but each

move (game round, order) is crucial => TCP

– FPS with less lag as possible and exchanged

data can be lost / predicted => UDP

9

TCP vs. UDP

• Game programmers do not want to deal

directly with TCP, UDP and IP

– complex networking all over the world

– no manual breaking of data into pieces

• They want to access the network like a local

file

– open distant site, read from it, write to it ...

• Abstraction layer: the socket interface

10

Sockets

• Input/output device to open a

communication pipeline between two sites

– to transfer information, both sites need an open

socket aimed at the other

– data exchange consists in writing and reading

to/from the socket

– establishing the socket is the most difficult part

• Operate in TCP or UDP modes

– most internal differences hidden

11

Sockets

• A client application is the endpoint of the

communications network

– connected to one server

– consumes data transferred from the server

– can also send data to server

– examples:

• web browser (doing requests)

• MMO game (retrieving data about the world and

updating the server with current player state)

12

Servers and clients

• A server is connected to several clients

– acts as a data provider for clients

– manages the incoming connections

– examples:

• web server (such as Google search or Facebook)

• MMO game server (dispatching world information,

players joining and quitting the game, lost of

connection etc.)

13

Servers and clients

• Socket on Windows: winsock

– processes that use winsock must initialize the
Windows Socket API (WSA) first

– reference to library Ws2_32.lib has to be added

14

Sockets

#include <winsock2.h> // contains basic socket functions and structures

#include <ws2tcpip.h> // advanced functions to retrieve IP@

WSADATA wsaData;

// Initialize winsock

int result = WSAStartup(MAKEWORD(2,2), &wsaData); // request v2.2

if (result != 0) {

 cout << “WSAStartup failed: ” << result << endl;

 exit(1);

}

• TCP client

• UDP client

• TCP server

• UDP server

15

Sockets

• A simple TCP client consists of

– Connection to the (game) server

– Writing of data to the server

– Reading of data from the server

– Closing of the connection when finished

• Use one single socket interface to

communicate with the server

– server address has to be known

16

TCP client

• To establish the client connection using the
required connection information: IP, address
and port

– creates a socket

– AF_INET for Internet connection (AF_UNIX for
communication within a single computer, AF_BTH
for Bluetooth address family etc.)

– SOCK_STREAM as we want stream-based
communications (else SOCK_DGRAM)

– IPPROTO_TCP as we want TCP as transport
protocol (else IPPROTO_UDP)

– returns a file descriptor if success,
INVALID_SOCKET otherwise

17

TCP client

int sock = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);

• Once created, we need the server info

– servers are usually referenced with DNS

address (e.g. gameserver.hostname.com)

– we need to convert it into a numeric IP address

– returns zero if success, non-zero value

otherwise

18

TCP client

int getaddrinfo (

 char* serverDNS, // server name

 char* port, // port number

 const addrinfo* hints, // caller type of socket

 addrinfo* result // response from the host

);

• Hints and result values are stored in an

addrinfo structure

19

TCP client

struct addrinfo {

 int ai_flags; // options (AI_PASSIVE, AI_SECURE ...)

 int ai_family; // network family (AF_INET)

 int ai_socktype; // socket type (SOCK_STREAM, SOCK_DGRAM ...)

 int ai_protocol; // protocol (IPPROTO_TCP, IPPROTO_UDP)

 size_t ai_addrlen; // size of the buffer ai_addr

 char * ai_canonname; // canonical name of the host (DNS)

 struct sockaddr * ai_addr; // pointer to the socket structure

 struct addrinfo * ai_next; // pointer to the next structure

};

• Complete the connection using created

socket and resulting connection data

– returns zero if success, SOCKET_ERROR

otherwise

20

TCP client

int error = connect(sock, result->ai_addr, result->ai_addrlen);

• Full client-side connection function

21

TCP client

int ConnectTCP (char *host, char *port) {

 // ... assuming WSAStartup ...

 // initialize TCP connection information

 struct addrinfo * result = NULL, hints;

 ZeroMemory(&hints, sizeof(hints));

 hints.ai_family = AF_INET;

 hints.ai_socktype = SOCK_STREAM;

 hints.ai_protocol = IPPROTO_TCP;

 // resolve server address and port

 int error = getaddrinfo(host, port, &hints, &result);

 if (error != 0) return error;

 // create socket for connecting to server

 int sock = socket(result->ai_family, result->ai_socktype, result->ai_protocol);

 if (sock == INVALID_SOCKET) return sock;

 // connect to server

 error = connect(sock, result->ai_addr, result->ai_addrlen);

 if (error == SOCKET_ERROR) return error;

 else return sock;

}

• Data transfer - Reading from the socket

– sock: the socket

– buffer: buffer where to store the data (memory

must be allocated)

– size: length of buffer in bytes

– flag: reading options (usually 0)

– returns the number of bytes received

– remains blocked as long as required number of

bytes not read

22

TCP client

int result = recv(SOCKET sock, char* buffer, int size, int flag);

• Data transfer - Reading from the socket

23

TCP client

// assuming creation and connection of socket sock

const int recvbuflen = 512;

char recvbuff[recvbuflen];

int result;

do {

 result = recv(sock, recvbuff, recvbuflen, 0);

 if (result > 0) {

 // do something with the data

 }

 else if (result == 0)

 cout << “Connection closed” << endl;

 else

 cout << “Receive failed: error #” << WSAGetLastError() << endl;

}

while (result > 0);

• Data transfer - Writing to the socket

– same parameters as reading

– returns number of bytes sent if success,

SOCKET_ERROR otherwise

24

TCP client

int result = send(

 SOCKET sock, const char* buffer,

 int strlenbuff, int flag

);

• Data transfer - Writing to the socket

25

TCP client

// assuming creation and connection of socket sock

char * sendbuf = “Data send by client”;

int result = send(sock, sendbuf, (int)strlen(sendbuf), 0);

if (result == SOCKET_ERROR)

 cout << “Send failed : error #” << WSAGetLastError() << endl;

• Closing socket

– close the sending side connection when no

more data has to be sent

– close the connection (both sides if no shutdown

first)

– clean the Windows sockets API

26

TCP client

int result = shutdown(sock, SD_SEND);

closesocket(sock);

WSACleanup();

• Pointer cast

• Convert data into char

• Structure

27

Data exchange

ostringstream os_data; os_data << x;

string s_data = os_data.str();

const char * buffer = s_data.c_str();

int result = send(sock, buffer, (int)strlen(buffer), 0);

float x; // to send and receive

int result = send(sock, (const char *) &x, sizeof(float), 0);

struct sMsg {

 char type;

 char data[512]; // or more specific like float

}

// ... construction of sMsg object msg ...

int result = send(sock, (const char *) &msg, sizeof(sMsg), 0);

• Easier than TCP

– no explicit connection declaration and closure

– 1 connection creation function, 1 send function,

1 receive function

• Creation function

28

UDP client

int sock = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP);

• Data transfer - Write to socket

29

UDP client

void sendUDP (char *msg, char *host, char *port, int socket) {

 struct addrinfo * result = NULL, hints;

 ZeroMemory(&hints, sizeof(hints));

 hints.ai_family = AF_INET;

 hints.ai_socktype = SOCK_DGRAM;

 hints.ai_protocol = IPPROTO_UDP;

 int error = getaddrinfo(host, port, &hints, &result);

 sendto(sock,

 msg, strlen(msg), 0,

 result->ai_addr, result->ai_addrlen);

}

• Data transfer - Reading from socket

– needs from parameter to get information on the

server sending the data

– we can use a single socket to receive data from

several connectionless servers

30

UDP client

int recvfrom (int socket, char *buffer, int buflen, int flags,

 sockaddr *from, int fromlen);

• We access the server name at each sending

call, not efficient

• 2 solutions

– to store the result structure outside the function

– to use connected UDP (vs. connectionless)

• used when the client has only one (game) server

1. create a datagram socket with UDP

2. use connect call with server

3. use regular send/recv function instead of

sendto/recvfrom

4. close when finished

31

UDP client

• Servers must be able to exchange

information with many clients at once

– sequential scan of open sockets

– concurrent server running parallel processes

dedicated to one socket and client

• 2 architectures

– single-peer server (two-player games)

– multiple-peer server (multi-player games)

32

TCP server

• One-to-one situation

• Server/client relationship is not symmetrical

• They play different roles and have different

calls

• The server uses two sockets

– the listen socket

• the server creates its own socket and puts it in

listening mode

– the client socket

• the server uses it to communicate with the client

33

Single-peer TCP server

• Listen socket creation

• Establishment of a relationship between the socket

and an IP address and communication port

– the server will look for connections through that IP/port

34

Single-peer TCP server

int listenSocket = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);

struct addrinfo * result = NULL, hints;

ZeroMemory(&hints, sizeof(hints));

hints.ai_family = AF_INET;

hints.ai_socktype = SOCK_STREAM;

hints.ai_protocol = IPPROTO_TCP;

hints.ai_flags = AI_PASSIVE; // indicates future use in a blind

int error = getaddrinfo(NULL, port, &hints, &result);

bind(listenSocket, result->ai_addr, result->ai_addrlen);

// associate the local address with the socket

• Place the socket in listening mode, waiting

for incoming connections

– queuelen specifies the length of the connection

queue (to prevent new requests to be lost

during the treatment of the current request),

usually up to 5

35

Single-peer TCP server

int listen(int listenSocket, int queuelen);

int result = listen(listenSocket,5);

if (result == SOCKET_ERROR)

 cout << “Listen failed : error #” << WSAGetLastError() << endl;

• The server will permit incoming connections

attempted on the listenSocket

– puts the server on hold until new connection

from client if none in queue

– returns the client socket descriptor if success,

INVALID_SOCKET otherwise

36

Single-peer TCP server

int accept(int socket, sockaddr *addr, int *addrlen);

int clientSocket = accept(listenSocket, NULL, NULL);

if (clientSocket == INVALID_SOCKET)

 cout << “Accept failed : error #” << WSAGetLastError() << endl;

• Client and server are ready to communicate

(send/recv) through the clientSocket

37

Single-peer TCP server

• In order to handle three to thousands of players
in parallel

• After a successful accept, we lose the ability to
handle more incoming connections

• We need to keep an eye on the incoming
connection queue while performing data
transfer with already connected clients

– 2 solutions
• 1 main thread waiting for new connections (in an accept

call) plus 1 thread per socket to handle data transfer

• iterative approach by checking incoming communications
in a loop

38

Multi-client TCP server

• To spawn a child thread for each accepted
connection

• Using Win32 thread API or OpenThreads library or
boost::thread class etc.

• Algorithm
1. Main thread creates a listening socket, and binds it to

IP/port

2. Main thread puts it in passive mode with listen function

3. Main thread waits in a loop for new connections with
accept function

4. Main thread creates a new child thread after each
successful accept

5. Main thread goes to step 3
1. Child thread enters the send/recv loop

2. Child thread exits loop when connection terminates

39

Concurrent TCP server

40

Concurrent TCP server

Game
server

Thread 1 Thread 2 Thread 3

listenSocket

clientSocket 1 clientSocket 2 clientSocket 3

Client 1 Client 3 Client 2

41

Concurrent TCP server
// connection information

struct addrinfo * result = NULL, hints;

ZeroMemory(&hints, sizeof(hints));

hints.ai_family = AF_INET;

hints.ai_socktype = SOCK_STREAM;

hints.ai_protocol = IPPROTO_TCP;

hints.ai_flags = AI_PASSIVE;

// get the IP/port information

getaddrinfo(NULL, port, &hints, &result);

// create a TCP socket

int listenSocket = socket(result->ai_family, result->ai_socktype, result->ai_protocol);

// setup the TCP listening socket

bind(listenSocket, result->ai_addr, result->ai_addrlen);

// put the socket in passive mode, and reserve 2 additional connection slots

listen(listenSocket,2);

// loop ‘infinitely’ for new connections

while (_serverIsRunning) {

 int clientSocket = accept(listenSocket, NULL, NULL);

 // we have a new connection, spawn a child thread

 // e.g. MyTCPThread childThread (clientSocket);

 }

}

• Same behavior without concurrent threads
– we must be able to check for new connections while

communicating with already connected clients

• We can use the select function which allows to
check several sockets at once

– returns the number of active sockets

– the 3 fd_set are the sets of sockets checked
• read: for readability

• write: for writability

• except: for errors

– timeout to avoid waiting forever

42

Iterative TCP server

int select (int nfds, fd_set *read, fd_set *write,

 fd_set *except, struct timeval *timeout);

43

Iterative TCP server
int clientSocket;

fd_set ready;

listen(listenSocket, 5); // 5 socket slots in the queue

struct timeval to; to.tv_sec = 5; to.tv_usec = 0; // wait max 5 seconds

FD_ZERO(&ready);

FD_SET(listenSocket, &ready); // only own socket available

while (_serverIsRunning) { // server loop

 select(0, &ready, 0, 0, &to); // fills ready with active sockets

 // two cases:

 // 1. data in listening socket means new connection request

 if (FD_ISSET(listenSocket, &ready)) { // new connection required

 clientSocket = accept(listenSocket, NULL, NULL);

 // ... read / write data in client socket

 close(clientSocket);

 }

 // 2. data in another socket, regular data sent from existing client

}

• As information about the client is in the

send/receive calls, sorting is already done!

– but reduced reliability and security

• Example of an echo server

44

Multi-client UDP server

void do_echo(int listenSocket) {

 struct sockaddr source_addr;

 int sasize = sizeof(source_addr);

 char buf[SIZEMSG];

 while (_serverIsRunning) {

 int nrecv = recvfrom(listenSocket, buf, SIZEMSG, 0, &source_addr, &sasize);

 int nsent = sendto(listenSocket, buf, nrecv, 0, &source_addr, sasize);

 }

}

• On Winsock (information and code)

– go to msdn.microsoft.com

MSDN Library

 Windows Development

 Networking

 Windows Sockets 2

45

More information

• We need extra code to ensure that the
sockets respond well to everyday use

• Main issue occurs when we do not have
enough data to read

– how are we supposed to know in advance the
size of non-fixed data?

• 3 solutions

– (to read one byte at each call, but very slow and
if no data is available the socket is still blocked)

– to get information on the size of the data to read

– to convert the blocking socket to non-blocking

46

Preventing blocks

• Sneak peek, using the flag in recv / send

– 0 is the default value, no special behavior

– MSG_OOB (Out-of-Band) is an urgent flag to
retrieve the data as an individual element
outside the sequence

– MSG_PEEK is used to peek at the socket
without reading data from it

never blocked by the lack of data

47

Preventing blocks

#define BUFFERSIZE 256

char * buffer = new char[BUFFERSIZE];

int available = recv(clientSocket, buffer, BUFFERSIZE, MSG_PEEK);

recv(clientSocket, buffer, available, 0);

• Conversion from blocking to non-blocking

socket, using ioctlsocket

– cmd is a command to perform on the socket

– argp is a pointer to the parameter for cmd

– returns 0 if successful, SOCKET_ERROR

otherwise

– conversion

48

Preventing blocks

int ioctlsocket(int clientSocket, long cmd, u_long * argp);

// u_long argp = 0; for blocking mode

// u_long argp = 1; (!= 0) for non-blocking mode

int result = ioctlsocket(clientSocket, FIONBIO, &argp);

• For small area games (3 to 16 players)

• One player runs both server and client

– the one with the faster computer and Internet
connection

• The other players run clients

• The server initiates the game, and is placed
in an accept loop (game lobby)

• When all players have joined the game, the
server stops accepting new incoming
requests

49

Client-server games

1. Server: create socket and bind to IP and port

2. Server: open game lobby and show IP/port. Listen and
wait in an accept loop

3. Server: while waiting connections, two threads required
– an interface thread running the game menu interaction

– a thread running the accept loop

4. Clients: open socket and connect to the game server

5. Server: update screen for each accepted connection
and implement the desired connection policy (iterative
UDP, concurrent TCP)

6. Server: when all the clients are connected
1. interrupt the accept loop

2. close the server listening socket

3. start the game with the connected client sockets

50

Client-server games

• Connection management works only at boot
time (in game lobby)
– The game server must ‘reboot’ (i.e. be back in

accept mode) when a player disconnects to be able
to recover the connection

51

Client-server games

Client 1

Client 2

Lobby

Game

accept

Client 1 Client 2

TCP server UDP server

• Many connections, Many data transfers, very
restrictive time constraints (lag), in-game
connection etc.

• Powerful computer or cluster of computers as
server

• Players run clients that update the server(s)
with player state information

• Servers broadcast the world state back to the
players

• Additional problems raise when trying to cover
thousands of players, but techniques allow to
reduce the amount of information to send

52

MMO Games

• Data extrapolation

– When a lag occurs, players’ states are not valid

anymore

– We can extrapolate continuous values (such as

player position in the world) using the few last

known values

– Jump back to real value when the next network-

based value arrives

– Works well for short lags

53

MMO Games

• Hierarchical messaging

– Different gameplay elements receive different

priorities

– Elements to send are determined regarding

each client connection bandwidth

– Example for FPS

1. enemies and other players positions

2. shooting and state information

3. weapon changes

4. mesh configuration / animation

54

MMO Games

• Spatial subdivision

– Games usually take place in a virtual spatial

environment

– Is it not useful to update all players with every

other players’ state but only the ones spatially in

the neighborhood

– Games are usually divided in zones, and

servers can calculate the N closest players

– Save a lot of messages to send

55

MMO Games

• Send state change only

– instead of sending full player state each time,
send only the changes when they occur

– save bandwidth but more difficult to maintain the
synchronization between the players

• Working with server clusters

– map the spatial disposition to the cluster to
avoid data transfer between servers

• Dynamic servers

– allow to change online the spatial dependency
of a server to compensate for a high traffic

56

MMO Games

End of lecture #13

Next lecture

Scripting

