Game Engine Programming

GMT Master Program
Utrecht University

Dr. Nicolas Pronost

Course code: INFOMGEP
Credits: 7.5 ECTS

Lecture #13

Game network programming

Introduction

« \We have seen that mechanisms can be
used to communicate between classes

— e.g. Listener and Event design patterns

« But how to communicate between classes
on different machines?

— Use of common protocols to send / receive
packets (data)

* Multi-player games use intensively multi-
machine exchanges

— local (LAN parties) or global (MMOG) network

%
>

W
14
AN
5
c
-y

N
EN
L

Few words about the Internet

* The Internet Is a packet-switched, fault-
tolerant network
— Information is broken into small packets (B / kB)

— sent from A to B by traversing a web-like server
structure (cyberspace)

— using different paths that adapt to network
circumstances, errors, server malfunctions etc.

— packets do not necessarily arrived in the correct
order, they need to be identified (labeled or
numbered)

Packet vs. Circuit

* |In circuit-based networks

—we own the communication circuit from origin to
destination

— access Is exclusive
— the path from A to B Is unique
— Information is sent as a single block

— used
* In traditional land telephone system
* In small / medium scale multi-player games (LAN)

% Universiteit Utrecht

Few words about the Internet

* Two tasks take place

— Data Is fragmented at one end and reassembled
at the other end

— Individual packets are routed through the
network

* Performed in parallel by two protocols

— Transmission Control Protocol (TCP) is the data
separator and assembler

— Internet Protocol (IP) takes care of the routing

% Universiteit Utrecht 6

TCP/IP

 Recommended for traditional networking

— guarantees FIFO (buffer) operations (data arrive
In the correct order) and ensures that the data
sent reach their destination

— as It allows to detect lost packets, and re-
request them

— but this protocol is slow

 walit to receive all packets in the correct order to
rebuild the initial sequence

e secure transmission at the cost of reduced
performance

% Universiteit Utrecht 7

UDP

« User Datagram Protocol (UDP)
— sacrifices slowest features for speed
— by sending fixed-size data packages

— does not require an active connection
(connectionless protocol)

— lost packets are not recovered
— FIFO iIs not guaranteed

b

Universiteit Utrecht

TCP vs. UDP

« Usage will depend on the game-play

« Examples

— Strategy game where lag Is acceptable but each
move (game round, order) is crucial => TCP

— FPS with less lag as possible and exchanged
data can be lost / predicted => UDP

% Universiteit Utrecht 9

Sockets

« Game programmers do not want to deal
directly with TCP, UDP and IP

— complex networking all over the world
— no manual breaking of data into pieces
* They want to access the network like a local
file
— open distant site, read from it, write to It ...
« Abstraction layer: the socket interface

>

W
14
AN
c
c
-y

10

N
EN
L

Sockets

* Input/output device to open a
communication pipeline between two sites

— to transfer information, both sites need an open
socket aimed at the other

— data exchange consists in writing and reading
to/from the socket

— establishing the socket is the most difficult part

* Operate in TCP or UDP modes
— most internal differences hidden

% Universiteit Utrecht

11

Servers and clients

 Aclient application is the endpoint of the
communications network
— connected to one server
— consumes data transferred from the server
— can also send data to server

— examples:
« web browser (doing requests)

« MMO game (retrieving data about the world and
updating the server with current player state)

bJ % Universiteit Utrecht

NS

N

12

@

\

§

AN

Servers and clients

* A server is connected to several clients
— acts as a data provider for clients
— manages the incoming connections

— examples:
» web server (such as Google search or Facebook)

« MMO game server (dispatching world information,

players joining and quitting the game, lost of
connection etc.)

Wi,
bJ é Universiteit Utrecht

13

Sockets

 Socket on Windows: winsock

#include <winsock2.h> // contalins basic socket functions and structures

#include <ws2tcpip.h> // advanced functions to retrieve IP@

— processes that use winsock must initialize the
Windows Socket APl (WSA) first

WSADATA wsaData;

// Initialize winsock

int result = WSAStartup (MAKEWORD (2,2), &wsaData):;
1t (result != 0) {

// request v2.2

cout << “WSAStartup failed: ” << result << endl;
exit (1) ;

}

— reference to library Ws2_32.lib has to be added
§% Universiteit Utrecht

14

Sockets

TCP client
UDP client
TCP server
UDP server

: Universiteit Utrecht

TCP client

* Asimple TCP client consists of

— Connection to the (game) server

— Writing of data to the server

— Reading of data from the server

— Closing of the connection when finished
* Use one single socket interface to

communicate with the server

— server address has to be known

% Universiteit Utrecht

16

TCP client

 To establish the client connection using the

required connection information: IP, address
and port

int sock = socket (AF INET, SOCK STREAM, IPPROTO TCP);

— creates a socket

— AF_INET for Internet connection (AF_UNIX for

communication within a single computer, AF_BTH
for Bluetooth address family etc.)

— SOCK_STREAM as we want stream-based
communications (else SOCK_DGRAM)

— IPPROTO_TCP as we want TCP as transport
protocol (else IPPROTO_UDP)

— returns a file descriptor If success,
INVALID SOCKET otherwise

% Universiteit Utrecht

17

TCP client

* Once created, we need the server Info

— servers are usually referenced with DNS
address (e.g. gameserver.hostname.com)

— we need to convert it Into a numeric IP address

int getaddrinfo (

char* serverDNS, // server name
char* port, // port number
const addrinfo* hints, // caller type of socket
addrinfo* result // response from the host

— returns zero If success, non-zero value
otherwise

%% Universiteit Utrecht 18

TCP client

« Hints and result values are stored in an
addrinfo structure

struct addrinfo {

int ai flags; // options (AI PASSIVE, AI SECURE ...)
int ai family; // network family (AF INET)
int ai socktype; // socket type (SOCK STREAM, SOCK DGRAM ...)
int ai protocol; // protocol (IPPROTO TCP, IPPROTO_UDP)
size t ai addrlen; // size of the buffer ai addr
char * ai canonname; // canonical name of the host (DNS)
struct sockaddr * ai addr; // pointer to the socket structure
struct addrinfo * ai next; // pointer to the next structure
I
§ Zl% Universiteit Utrecht 19
NS

TCP client

« Complete the connection using created
socket and resulting connection data

int error = connect (sock, result->ai addr, result->ai addrlen);

— returns zero If success, SOCKET ERROR
otherwise

&

\

@

Wi,
b % Universiteit Utrecht
NS

20

TCP client

e Full client-side connection function

int ConnectTCP (char *host, char *port) {
// ... assuming WSAStartup
// initialize TCP connection information

addrinfo * result = NULL, hints;

ZeroMemory (&hints, (hints)) ;
hints.ai family = AF INET;
hints.ai socktype = SOCK STREAM;
hints.ai protocol = IPPROTO TCP;

// resolve server address and port

int error = getaddrinfo(host, port, &hints, &result);
(error != 0) error;

// create socket for connecting to server

(sock == INVALID SOCKET) sock;

// connect to server

int sock = socket (result->ai family, result->ai socktype, result->ai protocol);

error = connect (sock, result->ai addr, result->ai addrlen);
(error == SOCKET ERROR) error;
sock;
}
§ Zl’;}‘% Universiteit Utrecht
U

TCP client

« Data transfer - Reading from the socket

int result = recv (SOCKET sock, char* buffer, int size, int flag);

— sock: the socket

— buffer: buffer where to store the data (memory
must be allocated)

— size: length of buffer in bytes
— flag: reading options (usually 0O)
— returns the number of bytes received

— remains blocked as long as required number of
bytes not read

E Universiteit Utrecht 22

RN

TCP client

Data transfer - Reading from the socket

// assuming creation and connection of socket sock

int recvbuflen = 512;
char recvbuff|[recvbuflen];
int result;

{

result = recv(sock, recvbuff, recvbuflen, 0);

(result > 0) {
// do something with the data

(result == 0)
cout << “Connection closed” << endl;

cout << “Receive failed: error #” << WSAGetLastError () << endl;

(result > 0);

3= bl = Universiteit Utrecht

NS

TCP client

« Data transfer - Writing to the socket

int result = send/(
SOCKET sock, const char* buffer,
int strlenbuff, int flag

Iy

— same parameters as reading

— returns number of bytes sent if success,
SOCKET_ERROR otherwise

§% Universiteit Utrecht

24

TCP client

Data transfer - Writing to the socket
// assuming creation and connection of socket sock
char * sendbuf = “Data send by client”;
int result = send(sock, sendbuf, (int)strlen(sendbuf), O0);
1f (result == SOCKET ERROR)
cout << “Send failed : error #” << WSAGetLastError () << endl;
: Universiteit Utrecht

TCP client

* Closing socket

— close the sending side connection when no
more data has to be sent

int result = shutdown(sock, SD SEND);

— close the connection (both sides if no shutdown
first)

closesocket (sock) ;

— clean the Windows sockets API

WSACleanup () ;

%% Universiteit Utrecht

26

Data exchange

float x; // to send and receive

 Pointer cast

int result = send(sock, (const char *) &x, sizeof(float), 0);

 Convert data into char

ostringstream os data; os data << x;
string s _data = os data.str();
const char * buffer = s data.c str();

int result = send(sock, buffer, (int)strlen (buffer), 0);

e Structure

struct sMsg {

char type;
char data[512]; // or more specific like float
}

// ... construction of sMsg object msg ...

int result = send(sock, (const char *) &msg, sizeof (sMsg), 0);
N
:‘%‘ b ‘/4‘ Universiteit Utrecht

UDP client

« Easierthan TCP

— no explicit connection declaration and closure

— 1 connection creation function, 1 send function,
1 recelve function

 Creation function

int sock = socket (AF INET, SOCK DGRAM, IPPROTO UDP);

% Universiteit Utrecht

28

N

—

UDP client

 Data transfer - Write to socket

sendUDP (char *msg, char *host, char *port, int socket) {

addrinfo * result = NULL, hints;
ZeroMemory (&hints, (hints)) ;
hints.ai family = AF INET;
hints.ali socktype = SOCK DGRAM;
hints.ai protocol = IPPROTO_UDP;

int error = getaddrinfo (host, port, &hints, &result);

sendto (sock,
msg, strlen(msg), O,
result->ai addr, result->ai addrlen);

N

1

Universiteit Utrecht

%?

UDP client

« Data transfer - Reading from socket

int recvfrom (int socket, char *buffer, int buflen, int flags,

sockaddr *from, int fromlen);

— needs from parameter to get information on the
server sending the data

— we can use a single socket to receive data from
several connectionless servers

% Universiteit Utrecht

UDP client

* We access the server name at each sending
call, not efficient

e 2 solutions

— to store the result structure outside the function

— to use connected UDP (vs. connectionless)
« used when the client has only one (game) server

1.
2.
3.

4.

Wi,
b % Universiteit Utrecht
YN

’é

\

@

create a datagram socket with UDP
use connect call with server

use regular send/recv function instead of
sendto/recvfrom

close when finished

31

TCP server

« Servers must be able to exchange
Information with many clients at once

— seguential scan of open sockets

— concurrent server running parallel processes
dedicated to one socket and client

« 2 architectures
— single-peer server (two-player games)
— multiple-peer server (multi-player games)

% Universiteit Utrecht

32

Single-peer TCP server

* One-to-one situation
» Server/client relationship is not symmetrical

* They play different roles and have different
calls

* The server uses two sockets

— the listen socket
* the server creates its own socket and puts it in
listening mode
— the client socket

* the server uses it to communicate with the client

N
N

/|

S,
N

A

Universiteit Utrecht

L

Single-peer TCP server

* Listen socket creation

int listenSocket = socket (AF INET, SOCK STREAM, IPPROTO TCP);

» Establishment of a relationship between the socket
and an IP address and communication port
— the server will look for connections through that IP/port

struct addrinfo * result = NULL, hints;

ZeroMemory (&hints, sizeof (hints));

hints.ai family = AF INET;

hints.ai socktype = SOCK STREAM;

hints.ai protocol = IPPROTO TCP;

hints.ai flags = AI PASSIVE; // indicates future use in a blind
int error = getaddrinfo (NULL, port, &hints, &result);

bind(listenSocket, result->ai addr, result->ai addrlen);

// associate the local address with the socket

Universiteit Utrecht 34

Single-peer TCP server

* Place the socket Iin listening mode, waiting
for iIncoming connections

int listen(int listenSocket, int queuelen);

— queuelen specifies the length of the connection
gueue (to prevent new requests to be lost
during the treatment of the current request),
usually upto 5

int result = listen(listenSocket, 5);

1f (result == SOCKET ERROR)
cout << “Listen failed : error #” << WSAGetLastError () << endl;

%
W

/A
4

£

Universiteit Utrecht 35

Single-peer TCP server

* The server will permit incoming connections
attempted on the listenSocket

int accept (int socket, sockaddr *addr, int *addrlen);

— puts the server on hold until new connection
from client if none in queue

— returns the client socket descriptor if success,
INVALID SOCKET otherwise

int clientSocket = accept(listenSocket, NULL, NULL);

1f (clientSocket == INVALID SOCKET)
cout << “Accept failed : error #” << WSAGetLastError () << endl;

TN

N

Universiteit Utrecht 36

Single-peer TCP server

« Client and server are ready to communicate
(send/recv) through the clientSocket

Server Client

s0ocket

Bind

Listen

Accept 1\ Socket
Connect

Receive = Send

Send » Receive

Close Close

A

% N ;-“"-E Universiteit Utrecht

NS

Multi-client TCP server

 |n order to handle three to thousands of players
in parallel

» After a successful accept, we lose the ability to
handle more incoming connections

* We need to keep an eye on the incoming
connection queue while performing data
transfer with already connected clients

— 2 solutions
« 1 main thread waiting for new connections (in an accept
call) plus 1 thread per socket to handle data transfer
* iterative approach by checking incoming communications
In a loop

N
N

N

Universiteit Utrecht

N
N

Concurrent TCP server

 To spawn a child thread for each accepted
connection

« Using Win32 thread API or OpenThreads library or
boost::thread class etc.

 Algorithm

1. Main thread creates a listening socket, and binds it to
IP/port

2. Main thread puts it in passive mode with listen function

3. Main thread waits in a loop for new connections with
accept function

4. Main thread creates a new child thread after each
successful accept

5. Main thread goes to step 3

1. Child thread enters the send/recv loop
2. Child thread exits loop when connection terminates

%% Universiteit Utrecht 39

Concurrent TCP server

listenSocket
Game
server
clientSocket 1 clientSocket 2 clientSocket 3
[Client 1] [Client 2] [Client 3]
%% Universiteit Utrecht 40

s

N
—

S

\\

Concurrent TCP server

// connection information

struct addrinfo * result = NULL, hints;
ZeroMemory (&hints, sizeof (hints)):;
hints.ai family = AF INET;

hints.ai socktype SOCK STREAM;
hints.ai protocol = IPPROTO TCP;
hints.ai flags = AI PASSIVE;

// get the IP/port information
getaddrinfo (NULL, port, &hints, é&result):;

// create a TCP socket
int listenSocket = socket (result->ai family, result->ai socktype, result->ai protocol);

// setup the TCP listening socket
bind(listenSocket, result->ai addr, result->ai addrlen);

// put the socket in passive mode, and reserve 2 additional connection slots
listen(listenSocket, 2) ;

// loop ‘infinitely’ for new connections

while (_ serverIsRunning) {
int clientSocket = accept(listenSocket, NULL, NULL) ;
// we have a new connection, spawn a child thread
// e.g. MyTCPThread childThread (clientSocket);

}

A

Universiteit Utrecht

lterative TCP server

« Same behavior without concurrent threads

— we must be able to check for new connections while
communicating with already connected clients

« We can use the select function which allows to
check several sockets at once

int select (int nfds, fd set *read, fd set *write,

fd set *except, struct timeval *timeout);

— returns the number of active sockets

— the 3 fd_set are the sets of sockets checked
 read: for readability
 write: for writability
« except: for errors

— timeout to avoid waiting forever
g% Universiteit Utrecht

42

lterative TCP server

int clientSocket;

fd set ready;
listen(listenSocket, 5); // 5 socket slots in the queue

struct timeval to; to.tv sec = 5; to.tv_usec = 0; // wait max 5 seconds
FD ZERO (&ready) ;
FD SET (listenSocket, &ready); // only own socket available

while (serverIsRunning) { // server loop
select (0, &ready, 0, 0, &to); // fills ready with active sockets
// two cases:
// 1. data in listening socket means new connection request
if (FD ISSET (listenSocket, &ready)) { // new connection required
clientSocket = accept(listenSocket, NULL, NULL);
// ... read / write data in client socket

close (clientSocket) ;

}

// 2. data in another socket, regular data sent from existing client
}
Wi
= b é Universiteit Utrecht

N
U

Multi-client UDP server

* As Information about the client is in the
send/receive calls, sorting Is already done!

— but reduced reliability and security
« Example of an echo server

vold do echo(int listenSocket) {

struct sockaddr source addr;

int sasize = sizeof (source addr);

char buf[SIZEMSG];

while (_serverIsRunning) ({
int nrecv = recvfrom(listenSocket, buf, SIZEMSG, 0, &source addr, &sasize);
int nsent = sendto(listenSocket, buf, nrecv, 0, &source addr, sasize);

}

——

NS
N

: Universiteit Utrecht

More information

* On Winsock (information and code)
— go to msdn.microsoft.com
»MSDN Library
» Windows Development
» Networking
> Windows Sockets 2

% Universiteit Utrecht

45

Preventing blocks

* We need extra code to ensure that the
sockets respond well to everyday use

« Maln issue occurs when we do not have
enough data to read

— how are we supposed to know in advance the
size of non-fixed data?

e 3 solutions

— (to read one byte at each call, but very slow and
If no data is available the socket is still blocked)

— to get information on the size of the data to read
— to convert the blocking socket to non-blocking

%;% Universiteit Utrecht 46

Preventing blocks

* Snheak peek, using the flag in recv / send

— 0 Is the default value, no special behavior

— MSG_OOB (Out-of-Band) Is an urgent flag to
retrieve the data as an individual element
outside the sequence

— MSG_PEEK Is used to peek at the socket
without reading data from it

#define BUFFERSIZE 256
char * buffer = new char[BUFFERSIZE];
int available = recv(clientSocket, buffer, BUFFERSIZE, MSG PEEK) ;

recv (clientSocket, buffer, available, 0);

»never blocked by the lack of data

% Universiteit Utrecht

Preventing blocks

« Conversion from blocking to non-blocking
socket, using Ioctlsocket

int ioctlsocket (int clientSocket, long cmd, u long * argp);

—cmd Is a command to perform on the socket
— argp Is a pointer to the parameter for cmd

—returns O If successful, SOCKET_ERROR
otherwise

— conversion

// u_long argp = 0; for blocking mode
// u long argp = 1; (!= 0) for non-blocking mode
int result = ioctlsocket(clientSocket, FIONBIO, &argp):;

§% Universiteit Utrecht

48

I
N

N
“

Client-server games

For small area games (3 to 16 players)

One player runs both server and client

— the one with the faster computer and Internet
connection

The other players run clients

The server initiates the game, and is placed
In an accept loop (game lobby)

When all players have joined the game, the
server stops accepting new incoming
requests

Universiteit Utrecht 49

Client-server games

Server: create socket and bind to IP and port

2. Server: open game lobby and show IP/port. Listen and
walt in an accept loop

3. Server: while waliting connections, two threads required
— an interface thread running the game menu interaction
— athread running the accept loop

Clients: open socket and connect to the game server

Server: update screen for each accepted connection
and implement the desired connection policy (iterative
UDP, concurrent TCP)

6. Server: when all the clients are connected

1. interrupt the accept loop

2. close the server listening socket

3. start the game with the connected client sockets

=

o A

’é

\

ﬁ

\l/

El% Universiteit Utrecht 50
N

AN

Client-server games

TCP server UDP server
Lobby Game
accept
Client 1] ‘ [| [|
Client 2 Client1 | | Client2 |

 Connection management works only at boot
time (in game lobby)

— The game server must ‘reboot’ (I.e. be back In
accept mode) when a player disconnects to be able
to recover the connection

§% Universiteit Utrecht 51

MMO Games

Many connections, Many data transfers, very
restrictive time constraints (lag), in-game
connection etc.

Powerful computer or cluster of computers as
server

Players run clients that update the server(s)
with player state information

Servers broadcast the world state back to the
players

Additional problems raise when trying to cover
thousands of players, but techniques allow to
reduce the amount of information to send

MMO Games

« Data extrapolation

— When a lag occurs, players’ states are not valid
anymore

— We can extrapolate continuous values (such as
player position in the world) using the few last
known values

— Jump back to real value when the next network-
based value arrives

— Works well for short lags

M = Universiteit Utrecht 53

MMO Games

» Hierarchical messaging

— Different gameplay elements receive different
priorities

— Elements to send are determined regarding
each client connection bandwidth

— Example for FPS
1. enemies and other players positions
2. shooting and state information
3. weapon changes
4. mesh configuration / animation

% Universiteit Utrecht

54

MMO Games

« Spatial subdivision

— Games usually take place in a virtual spatial
environment

— Is it not useful to update all players with every
other players’ state but only the ones spatially in
the neighborhood

— Games are usually divided in zones, and
servers can calculate the N closest players

— Save a lot of messages to send

M = Universiteit Utrecht 55

MMO Games

« Send state change only

— Instead of sending full player state each time,
send only the changes when they occur

— save bandwidth but more difficult to maintain the
synchronization between the players

* Working with server clusters

— map the spatial disposition to the cluster to
avoid data transfer between servers

* Dynamic servers

— allow to change online the spatial dependency
of a server to compensate for a high traffic

E Universiteit Utrecht 56

End of lecture #13

Next lecture
Scripting

